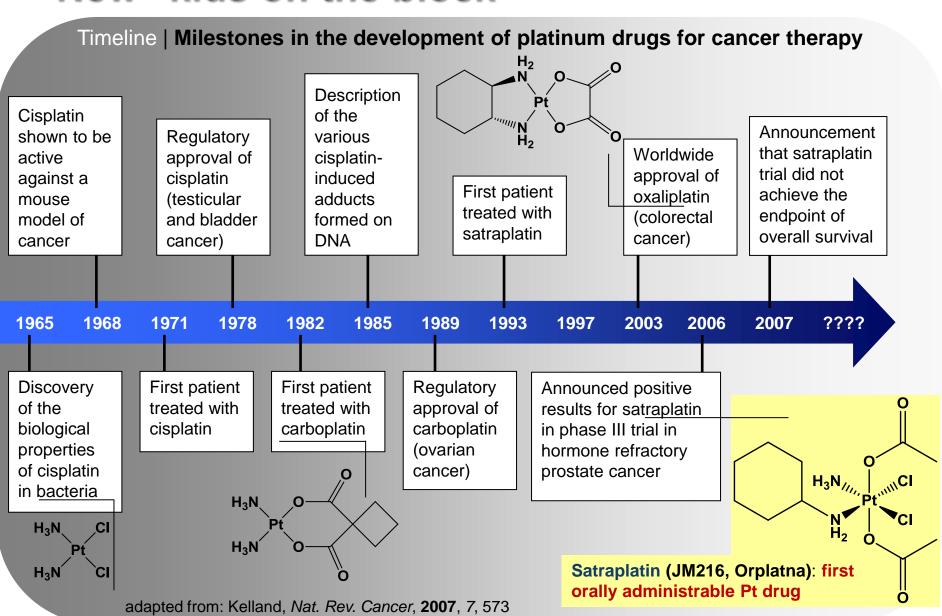


Strategies for the Development of Novel Pt Anticancer Compounds: Shifting the Paradigms from Pt(II) to Pt(IV) Complexes.

Mauro RAVERA

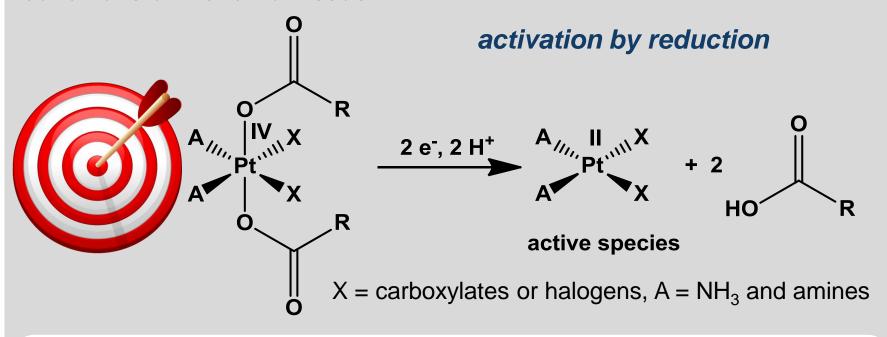
Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria (Italy) mauro.ravera @unipmn.it

Cisplatin: a leading anticancer drug


cis-diamminedichloridoplatinum(II) [PtCl₂(NH₃)₂]

- cisplatin was included (1999) into the WHO list of 17 essential anticancer drugs;
- cisplatin was approved (1978) to be used alone or with other drugs to treat: bladder, cervical, ovarian, testicular, non-small cell lung cancer, malignant mesothelioma, and squamous cell carcinoma;
- DNA is the main final target.

Main problems associated with the use of cisplatin:


- severe side effects (e.g., kidney damage, vomiting, neurotoxicity, etc.);
- development of resistance (acquired during the treatment).

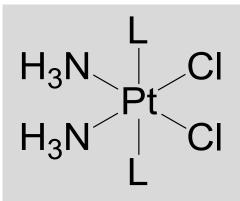
"New" kids on the block

Pt(IV)-based anticancer prodrugs

Pt(IV) complexes are supposed to act as **prodrugs** being *reduced in vivo* to their active Pt(II) metabolites in the hypoxic and reducing conditions of the tumor tissue.

Activation **ONLY** in the tumour tissue through a rational choice of the ligands to modulate the key features (*i.e.*, reduction potential, reduction rate, lipophilicity, nature of the final Pt(II) metabolite).

Pt(IV) and cisplatin-resistant tumors


KEY QUESTION #1: may Pt(IV) complex be useful to bypass chemoresistance?

Cisplatin resistance can occur by several ways, in particular by increased drug efflux (through "chemical" efflux pumps).

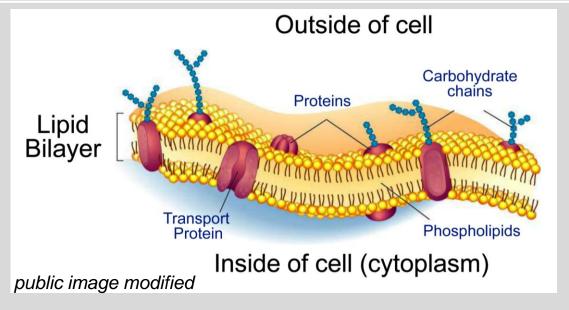
- The rationale: Pt(IV) complexes are not the target of efflux pumps.
- The case study: 4 cisplatin-based Pt(IV) complexes were tested on 8 cancer cell lines sensitive, intrinsically or made resistant to cisplatin + 1 non-tumoral as healthy control.

Antiproliferative activity is evaluated as IC_{50} = half maximal inhibitory concentration, *i.e.*, concentration required to reduce the viability of cells by 50% as compared with the control cells.

Pt(IV) and cisplatin-resistant tumors

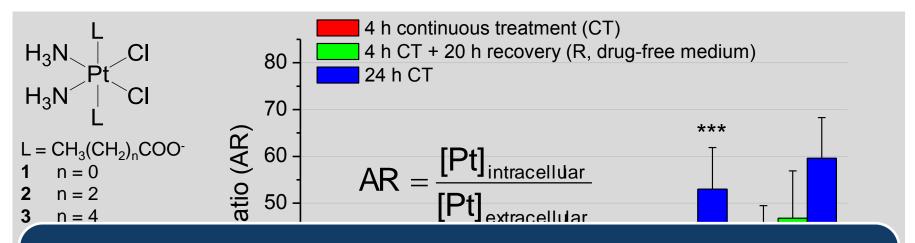
Cmpd	IC ₅₀ (μΜ)			
	BR95	MM98	MM98R	RF
cisplatin	6.2±0.9	3.2±1.0	19.4±2.8	6.1

In general: high lipophilicity → high activity (also on cisplatin-resistant sublines)

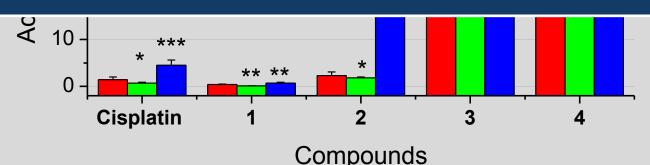

3	0.9±0.1	0.3±0.1	0.8±0.1	2.7
4	64±19×10 ⁻³	17±4×10 ⁻³	22±3×10 ⁻³	1.3

Legend Malignant pleural mesothelioma cell lines: *BR95* epithelioid and *MM98* sarcomatoid phenotypes; *MM98R* = cisplatin-resistant subline derived from MM98.

Pt(IV) and cisplatin-resistant tumors



KEY QUESTION #2: is lipophilicity important only because intracellular [Pt] is high?



- The rationale: there is affinity between lipophilic compounds and (lipophilic) cell membrane. Is it enough?
- The case study: measurement of the cell accumulation and DNA platination of the 4 cisplatin-based Pt(IV).

Accumulation of Pt(IV) complexes

High lipophilicity → high accumulation (passive diffusion) → LIMITED EFFLUX during recovery → high DNA platination (the final target) → high activity

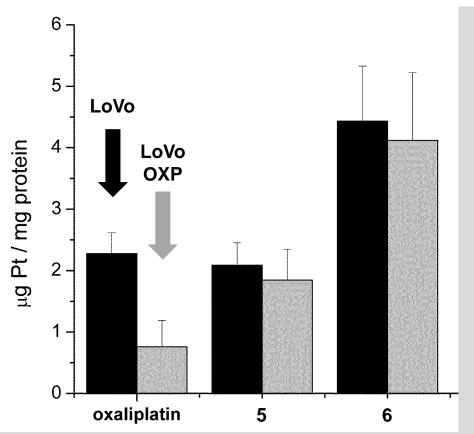
Notes: AR of A2780 ovarian cancer cells treated with 10 μ M of the Pt complexes. Data are means \pm SD of at least 3 independent replicates and were compared to those obtained for each drug after 4 h CT by means of the two sample t-test (*p<0.05;** p<0.01; ***p<0.001).

Pt(IV) and oxaliplatin-resistant tumors

KEY QUESTION #3: may Pt(IV) complex be useful to bypass chemoresistance to other Pt drugs?

Colorectal cancer is the third most common type of cancer.

Standard treatment consists of oxaliplatin, but a relapse of the disease may occur because of the emergence of drug-resistant clones.

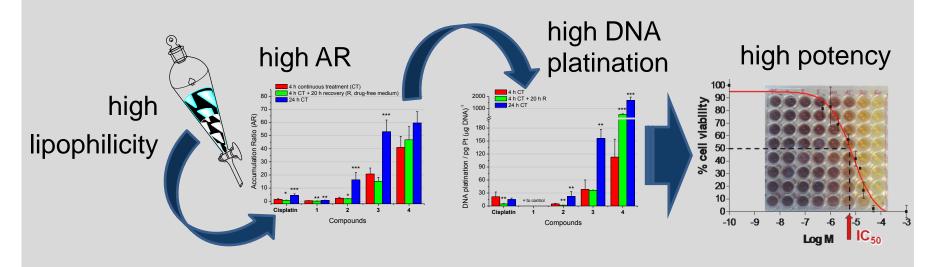

• **The case study:** oxaliplatin and two cyclohexane-1*R*,2*R*-diamine complexes were tested on oxaliplatin-resistant cell lines.

Pt(IV) and oxaliplatin-resistant tumors

	Cmpd	IC ₅₀ [μΜ]		DE _ /C ₅₀ (LoVo - OXP)	
	Cilipa	LoVo	LoVo-OXP	$\mathbf{RF} = \frac{IC_{50} \text{ (LoVo - OXP)}}{IC_{50} \text{ (LoVo)}}$	
C	cisplatin	9.12±1.35	16.16±3.36	1.8	o 53
ох	oxaliplatin	$0.89\!\pm\!0.46$	15.25 ± 2.24	17.1	17
	5	6.23 ± 2.34	12.86±1.32	2 ()	38
	6	0.093 ± 0.030	$0.068\!\pm\!0.02$	0.7	Γ

Data represent the mean \pm SD of at least three independent experiments performed in triplicate (72 h CT). LoVo = colon carcinoma cell line, LoVo-OXP = oxaliplatin-resistant subline derived from LoVo.

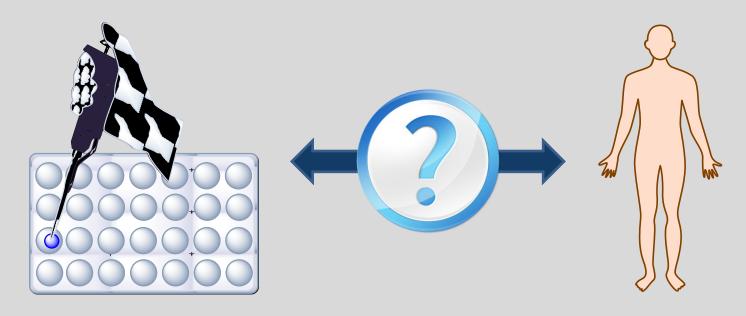
Pt(IV) and oxaliplatin-resistant tumors



Intracellular accumulation of Pt complexes detected by GF-AAS analysis. LoVo (black bars) and LoVo-OXP (grey bars) cells were incubated for 24 h with 5 μ M of complexes **5**, **6**, and oxaliplatin.

The activity of 6, showing the largest accumulation in both LoVo and LoVo-OXP, is related to its high lipophilicity that favors its cellular accumulation by passive diffusion.

Final (for the moment!) considerations


- with axial aliphatic carboxylato ligands, the lipophilicity increases as the number of carbon atoms in the chain increases, resulting in a beneficial effect on the cellular accumulation (*passive diffusion*), DNA platination, as well as on the *in vitro* antiproliferative activity also *vs.* Pt(II)-resistant cell lines.
- Highly lipophilic compounds "fill" the cells by a double effect: high uptake and limited efflux.

Final (for the moment!) considerations

BUT...

- there is a limit to lipophilicity when the corresponding drop in water solubility makes almost impossible to test these compounds without the extensive use of organic co-solvents.
- from a clinical point of view, the oral absorption may decrease since excessive lipophilicity decreases the transport across intestinal cells.

Thanks to:

D. Osella

E. Gabano

S. Bianco

I. Zanellato

I. Bonarrigo

Valentina Gandin Cristina Marzano

Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (Bari)

